Advanced Fine-Tuning & Prompt Management in Vertex AI培訓
Vertex AI provides advanced tools for fine-tuning large models and managing prompts, enabling developers and data teams to optimize model accuracy, streamline iteration workflows, and ensure evaluation rigor with built-in libraries and services.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level practitioners who wish to improve performance and reliability of generative AI applications using supervised fine-tuning, prompt versioning, and evaluation services in Vertex AI.
By the end of this training, participants will be able to:
- Apply supervised fine-tuning techniques to Gemini models in Vertex AI.
- Implement prompt management workflows including versioning and testing.
- Leverage evaluation libraries to benchmark and optimize AI performance.
- Deploy and monitor improved models in production environments.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs with Vertex AI fine-tuning and prompt tools.
- Case studies of enterprise model optimization.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
課程簡介
Introduction to Advanced Model Customization
- Overview of fine-tuning and prompt management in Vertex AI
- Use cases for model optimization
- Hands-on lab: setting up the Vertex AI workspace
Supervised Fine-Tuning of Gemini Models
- Preparing training data for fine-tuning
- Running supervised fine-tuning pipelines
- Hands-on lab: fine-tuning a Gemini model
Prompt Engineering and Version Management
- Designing effective prompts for generative AI
- Version control and reproducibility
- Hands-on lab: creating and testing prompt versions
Evaluation and Benchmarking
- Overview of evaluation libraries in Vertex AI
- Automating testing and validation workflows
- Hands-on lab: evaluating prompts and outputs
Model Deployment and Monitoring
- Integrating optimized models into applications
- Monitoring performance and drift detection
- Hands-on lab: deploying a fine-tuned model
Best Practices for Enterprise AI Optimization
- Scalability and cost management
- Ethical considerations and bias mitigation
- Case study: improving AI applications in production
Future Directions in Fine-Tuning and Prompt Management
- Emerging trends in LLM optimization
- Automated prompt adaptation and reinforcement learning
- Strategic implications for enterprise adoption
Summary and Next Steps
最低要求
- Experience with machine learning workflows
- Knowledge of Python programming
- Familiarity with cloud-based AI platforms
Audience
- AI engineers
- MLops practitioners
- Data scientists
需要幫助選擇合適的課程嗎?
Advanced Fine-Tuning & Prompt Management in Vertex AI培訓 - Enquiry
Advanced Fine-Tuning & Prompt Management in Vertex AI - 咨詢詢問
咨詢詢問
相關課程
高級遷移學習技術
14 時間:這種由講師指導的 澳門 現場培訓(在線或現場)面向希望掌握尖端遷移學習技術並將其應用於複雜現實問題的高級機器學習專業人員。
在本次培訓結束時,參與者將能夠:
- 瞭解遷移學習中的高級概念和方法。
- 為預先訓練的模型實施特定於域的適應技術。
- 應用持續學習來管理不斷變化的任務和數據集。
- 掌握多任務微調,以提高跨任務的模型性能。
定製AI解決方案與Google Vertex AI
14 時間:本次由講師指導的澳門(線上或線下)培訓,面向中級開發者、數據科學家和技術專業人士,旨在幫助他們利用Google Vertex AI創建和部署自定義AI模型。
培訓結束後,參與者將能夠:
- 瞭解Google Vertex AI的功能和特性。
- 設置和配置Google Vertex AI環境。
- 使用Vertex AI開發和訓練自定義AI模型。
- 在Google Cloud Platform上部署和管理AI模型。
- 利用Vertex AI的工具監控和優化模型性能。
- 實施AI模型開發和部署的最佳實踐。
在生產環境中部署微調模型
21 時間:這種由講師指導的 澳門 現場現場培訓(在線或現場)面向希望可靠、高效地部署微調模型的高級專業人員。
在本次培訓結束時,參與者將能夠:
- 瞭解將微調模型部署到生產環境中所面臨的挑戰。
- 使用 Docker 和 Kubernetes 等工具容器化和部署模型。
- 對已部署的模型實施監控和日誌記錄。
- 在實際場景中優化模型以實現延遲和可擴充性。
微調模型與大型語言模型 (LLMs)
14 時間:這種由講師指導的 澳門 現場培訓(在線或現場)面向希望為特定任務和數據集自定義預訓練模型的中高級專業人員。
在本次培訓結束時,參與者將能夠:
- 瞭解微調的原理及其應用。
- 準備數據集以微調預訓練模型。
- 為 NLP 任務微調大型語言模型 (LLM)。
- 優化模型性能並解決常見挑戰。
高效微調與低秩適應(LoRA)
14 時間:這種由講師指導的 澳門 現場培訓(在線或現場)面向希望在不需要大量計算資源的情況下為大型模型實施微調策略的中級開發人員和 AI 從業者。
在本次培訓結束時,參與者將能夠:
- 瞭解低秩適應 (LoRA) 的原理。
- 實施LoRA以高效微調大型模型。
- 針對資源受限的環境優化微調。
- 評估和部署LoRA調優模型以用於實際應用。
微調多模態模型
28 時間:這種由講師指導的 澳門 現場培訓(在線或現場)面向希望掌握創新 AI 解決方案的多模態模型微調的高級專業人員。
在本次培訓結束時,參與者將能夠:
- 瞭解 CLIP 和 Flamingo 等多模態模型的架構。
- 有效地準備和預處理多模態數據集。
- 針對特定任務微調多模態模型。
- 針對實際應用程式和性能優化模型。
自然語言處理(NLP)微調
21 時間:這種由講師指導的 澳門 現場培訓(在線或現場)面向希望通過有效微調預先訓練的語言模型來增強其 NLP 專案的中級專業人員。
在本次培訓結束時,參與者將能夠:
- 瞭解 NLP 任務微調的基礎知識。
- 針對特定的 NLP 應用程式微調預訓練模型,例如 GPT、BERT 和 T5。
- 優化超參數以提高模型性能。
- 在實際場景中評估和部署微調的模型。
Generative Media with Vertex AI: Image, Video, Audio, and Music
14 時間:Vertex AI provides a unified platform for generative media, offering models like Veo for video, Imagen for image creation, Chirp for speech, and Lyria for music. These capabilities enable production-ready workflows for creative, marketing, and enterprise use cases.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to harness generative AI for multimedia content creation and deployment using Vertex AI.
By the end of this training, participants will be able to:
- Generate images, videos, audio, and music using Vertex AI’s suite of models.
- Integrate generative media into marketing and product workflows.
- Optimize prompts and fine-tune outputs for quality and brand consistency.
- Deploy production-ready generative media solutions in enterprise settings.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises with Vertex AI generative media models.
- Real-world case studies and creative project labs.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Multimodal LLM Workflows in Vertex AI
14 時間:Vertex AI provides powerful tools for building multimodal LLM workflows that integrate text, audio, and image data into a single pipeline. With long context window support and Gemini API parameters, it enables advanced applications in planning, reasoning, and cross-modal intelligence.
This instructor-led, live training (online or onsite) is aimed at intermediate to advanced-level practitioners who wish to design, build, and optimize multimodal AI workflows in Vertex AI.
By the end of this training, participants will be able to:
- Leverage Gemini models for multimodal inputs and outputs.
- Implement long-context workflows for complex reasoning.
- Design pipelines that integrate text, audio, and image analysis.
- Optimize Gemini API parameters for performance and cost efficiency.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs with multimodal workflows.
- Project-based exercises for applied multimodal use cases.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Prompt Engineering 與 Few-Shot 微調
14 時間:這種由講師指導的 澳門 現場培訓(在線或現場)面向希望利用快速工程和少量學習的力量來優化實際應用的 LLM 性能的中級專業人士。
在本次培訓結束時,參與者將能夠:
- 瞭解快速工程和小樣本學習的原則。
- 為各種 NLP 任務設計有效的提示。
- 利用小樣本技術以最少的數據調整 LLM。
- 針對實際應用優化 LLM 性能。
遷移學習簡介
14 時間:這種由講師指導的現場培訓<本地>(在線或現場)面向希望瞭解和應用遷移學習技術來提高 AI 專案的效率和性能的初級到中級機器學習專業人員。
在本次培訓結束時,參與者將能夠:
- 瞭解遷移學習的核心概念和優勢。
- 探索流行的預訓練模型及其應用程式。
- 為自定義任務執行預訓練模型的微調。
- 應用遷移學習來解決 NLP 和電腦視覺中的實際問題。
Vertex AI
7 時間:本課程爲講師主導的澳門(線上或線下)培訓,適合初學者到中級水平的軟件工程師,或任何希望學習如何使用Vertex AI完成機器學習活動的人員。
通過本培訓,參與者將能夠:
- 瞭解Vertex AI的工作原理,並將其作爲機器學習平臺使用。
- 學習機器學習和自然語言處理(NLP)的概念。
- 掌握如何使用Vertex AI訓練和部署機器學習模型。
Building Smart Agents with Vertex AI Agent Builder & RAG
14 時間:Vertex AI Agent Builder is a no-code/low-code environment for creating grounded agents that combine generative models with retrieval-augmented generation (RAG), allowing teams to rapidly build agents that use enterprise data and search to provide accurate, context-aware responses.
This instructor-led, live training (online or onsite) is aimed at intermediate-level practitioners who wish to design, configure, and deploy smart agents using Vertex AI Agent Builder and RAG patterns.
By the end of this training, participants will be able to:
- Design grounded agent workflows using Agent Builder.
- Implement RAG pipelines with search and vector stores.
- Integrate enterprise data sources securely for retrieval.
- Evaluate and iterate agent behavior using testing and metrics.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs using Vertex AI Agent Builder and RAG components.
- Project-based exercises to build and refine agents.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Vertex AI Embedded & Mobile: Gemini in Apps via Firebase & SDKs
14 時間:Vertex AI provides streamlined integration options for embedding Gemini models directly into mobile and web applications using Firebase and SDKs. This enables developers and product teams to deliver AI-powered features at the app level, such as intelligent assistants, multimodal input handling, and personalized user experiences.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level practitioners who wish to embed Vertex AI Gemini capabilities into applications using Firebase and related SDKs.
By the end of this training, participants will be able to:
- Set up Firebase and SDKs for Vertex AI integration.
- Embed Gemini-powered features into mobile and web apps.
- Handle multimodal inputs such as text, image, and audio in client apps.
- Deploy and monitor AI features in production applications.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs with Firebase and Vertex AI SDKs.
- Project-based exercises for app-level AI features.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Vertex AI in the Enterprise: MLOps, Monitoring & Compliance
14 時間:Vertex AI provides enterprise-ready tools for managing the full machine learning lifecycle, including observability, compliance, and operational excellence. With live monitoring, data residency controls, grounding, and integrated Gen AI evaluation, Vertex AI is designed to meet the demands of production-grade AI systems.
This instructor-led, live training (online or onsite) is aimed at intermediate to advanced-level professionals who wish to deploy, monitor, and govern Vertex AI models in enterprise environments.
By the end of this training, participants will be able to:
- Set up MLOps pipelines using Vertex AI.
- Monitor and observe models with real-time insights.
- Apply grounding techniques and evaluation tools for Gen AI models.
- Implement compliance and governance strategies, including data residency controls.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs with enterprise-grade Vertex AI tools.
- Case studies and compliance-driven scenarios.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.