課程簡介
Machine Learning 与 Google Colab 简介
- 机器学习概述
- 设置 Google Colab
- Python 复习
使用 Scikit-learn 进行 Supervised Learning
- 回归模型
- 分类模型
- 模型评估与优化
Unsupervised Learning 技术
- 聚类算法
- 降维
- 关联规则学习
高级 Machine Learning 概念
- 神经网络与深度学习
- 支持向量机
- 集成方法
Machine Learning 专题
- 特征工程
- 超参数调优
- 模型可解释性
Machine Learning 项目工作流程
- 数据预处理
- 模型选择
- 模型部署
毕业项目
- 问题定义
- 数据收集与清洗
- 模型训练与评估
总结与下一步
最低要求
- 具备基本的编程概念理解
- 具备Python编程经验
- 熟悉基本的统计概念
受众
- 数据科学家
- 软件开发人员
客戶評論 (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Course - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.