Continual Learning and Model Update Strategies for Fine-Tuned Models Training Course
Continual learning is a set of strategies that enable machine learning models to update incrementally and adapt to new data over time.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI maintenance engineers and MLOps professionals who wish to implement robust continual learning pipelines and effective update strategies for deployed, fine-tuned models.
By the end of this training, participants will be able to:
- Design and implement continual learning workflows for deployed models.
- Mitigate catastrophic forgetting through proper training and memory management.
- Automate monitoring and update triggers based on model drift or data changes.
- Integrate model update strategies into existing CI/CD and MLOps pipelines.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Continual Learning
- Why continual learning matters
- Challenges in maintaining fine-tuned models
- Key strategies and learning types (online, incremental, transfer)
Data Handling and Streaming Pipelines
- Managing evolving datasets
- Online learning with mini-batches and streaming APIs
- Data labeling and annotation challenges over time
Preventing Catastrophic Forgetting
- Elastic Weight Consolidation (EWC)
- Replay methods and rehearsal strategies
- Regularization and memory-augmented networks
Model Drift and Monitoring
- Detecting data and concept drift
- Metrics for model health and performance decay
- Triggering automated model updates
Automation in Model Updating
- Automated retraining and scheduling strategies
- Integration with CI/CD and MLOps workflows
- Managing update frequency and rollback plans
Continual Learning Frameworks and Tools
- Overview of Avalanche, Hugging Face Datasets, and TorchReplay
- Platform support for continual learning (e.g., MLflow, Kubeflow)
- Scalability and deployment considerations
Real-World Use Cases and Architectures
- Customer behavior prediction with evolving patterns
- Industrial machine monitoring with incremental improvements
- Fraud detection systems under changing threat models
Summary and Next Steps
Requirements
- An understanding of machine learning workflows and neural network architectures
- Experience with model fine-tuning and deployment pipelines
- Familiarity with data versioning and model lifecycle management
Audience
- AI maintenance engineers
- MLOps engineers
- Machine learning practitioners responsible for model lifecycle continuity
Need help picking the right course?
Continual Learning and Model Update Strategies for Fine-Tuned Models Training Course - Enquiry
Continual Learning and Model Update Strategies for Fine-Tuned Models - Consultancy Enquiry
Consultancy Enquiry
Related Courses
Advanced Techniques in Transfer Learning
14 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at advanced-level machine learning professionals who wish to master cutting-edge transfer learning techniques and apply them to complex real-world problems.
By the end of this training, participants will be able to:
- Understand advanced concepts and methodologies in transfer learning.
- Implement domain-specific adaptation techniques for pre-trained models.
- Apply continual learning to manage evolving tasks and datasets.
- Master multi-task fine-tuning to enhance model performance across tasks.
Deploying Fine-Tuned Models in Production
21 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at advanced-level professionals who wish to deploy fine-tuned models reliably and efficiently.
By the end of this training, participants will be able to:
- Understand the challenges of deploying fine-tuned models into production.
- Containerize and deploy models using tools like Docker and Kubernetes.
- Implement monitoring and logging for deployed models.
- Optimize models for latency and scalability in real-world scenarios.
Domain-Specific Fine-Tuning for Finance
21 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at intermediate-level professionals who wish to gain practical skills in customizing AI models for critical financial tasks.
By the end of this training, participants will be able to:
- Understand the fundamentals of fine-tuning for finance applications.
- Leverage pre-trained models for domain-specific tasks in finance.
- Apply techniques for fraud detection, risk assessment, and financial advice generation.
- Ensure compliance with financial regulations such as GDPR and SOX.
- Implement data security and ethical AI practices in financial applications.
Fine-Tuning Models and Large Language Models (LLMs)
14 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to customize pre-trained models for specific tasks and datasets.
By the end of this training, participants will be able to:
- Understand the principles of fine-tuning and its applications.
- Prepare datasets for fine-tuning pre-trained models.
- Fine-tune large language models (LLMs) for NLP tasks.
- Optimize model performance and address common challenges.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at intermediate-level developers and AI practitioners who wish to implement fine-tuning strategies for large models without the need for extensive computational resources.
By the end of this training, participants will be able to:
- Understand the principles of Low-Rank Adaptation (LoRA).
- Implement LoRA for efficient fine-tuning of large models.
- Optimize fine-tuning for resource-constrained environments.
- Evaluate and deploy LoRA-tuned models for practical applications.
Fine-Tuning Multimodal Models
28 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at advanced-level professionals who wish to master multimodal model fine-tuning for innovative AI solutions.
By the end of this training, participants will be able to:
- Understand the architecture of multimodal models like CLIP and Flamingo.
- Prepare and preprocess multimodal datasets effectively.
- Fine-tune multimodal models for specific tasks.
- Optimize models for real-world applications and performance.
Fine-Tuning for Natural Language Processing (NLP)
21 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at intermediate-level professionals who wish to enhance their NLP projects through the effective fine-tuning of pre-trained language models.
By the end of this training, participants will be able to:
- Understand the fundamentals of fine-tuning for NLP tasks.
- Fine-tune pre-trained models such as GPT, BERT, and T5 for specific NLP applications.
- Optimize hyperparameters for improved model performance.
- Evaluate and deploy fine-tuned models in real-world scenarios.
Fine-Tuning AI for Financial Services: Risk Prediction and Fraud Detection
14 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at advanced-level data scientists and AI engineers in the financial sector who wish to fine-tune models for applications such as credit scoring, fraud detection, and risk modeling using domain-specific financial data.
By the end of this training, participants will be able to:
- Fine-tune AI models on financial datasets for improved fraud and risk prediction.
- Apply techniques such as transfer learning, LoRA, and regularization to enhance model efficiency.
- Integrate financial compliance considerations into the AI modeling workflow.
- Deploy fine-tuned models for production use in financial services platforms.
Fine-Tuning AI for Healthcare: Medical Diagnosis and Predictive Analytics
14 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at intermediate-level to advanced-level medical AI developers and data scientists who wish to fine-tune models for clinical diagnosis, disease prediction, and patient outcome forecasting using structured and unstructured medical data.
By the end of this training, participants will be able to:
- Fine-tune AI models on healthcare datasets including EMRs, imaging, and time-series data.
- Apply transfer learning, domain adaptation, and model compression in medical contexts.
- Address privacy, bias, and regulatory compliance in model development.
- Deploy and monitor fine-tuned models in real-world healthcare environments.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at advanced-level AI researchers, machine learning engineers, and developers who wish to fine-tune DeepSeek LLM models to create specialized AI applications tailored to specific industries, domains, or business needs.
By the end of this training, participants will be able to:
- Understand the architecture and capabilities of DeepSeek models, including DeepSeek-R1 and DeepSeek-V3.
- Prepare datasets and preprocess data for fine-tuning.
- Fine-tune DeepSeek LLM for domain-specific applications.
- Optimize and deploy fine-tuned models efficiently.
Fine-Tuning Defense AI for Autonomous Systems and Surveillance
14 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at advanced-level defense AI engineers and military technology developers who wish to fine-tune deep learning models for use in autonomous vehicles, drones, and surveillance systems while meeting stringent security and reliability standards.
By the end of this training, participants will be able to:
- Fine-tune computer vision and sensor fusion models for surveillance and targeting tasks.
- Adapt autonomous AI systems to changing environments and mission profiles.
- Implement robust validation and fail-safe mechanisms in model pipelines.
- Ensure alignment with defense-specific compliance, safety, and security standards.
Fine-Tuning Legal AI Models: Contract Review and Legal Research
14 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at intermediate-level legal tech engineers and AI developers who wish to fine-tune language models for tasks like contract analysis, clause extraction, and automated legal research in legal service environments.
By the end of this training, participants will be able to:
- Prepare and clean legal documents for fine-tuning NLP models.
- Apply fine-tuning strategies to improve model accuracy on legal tasks.
- Deploy models to assist with contract review, classification, and research.
- Ensure compliance, auditability, and traceability of AI outputs in legal contexts.
Fine-Tuning Large Language Models Using QLoRA
14 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at intermediate-level to advanced-level machine learning engineers, AI developers, and data scientists who wish to learn how to use QLoRA to efficiently fine-tune large models for specific tasks and customizations.
By the end of this training, participants will be able to:
- Understand the theory behind QLoRA and quantization techniques for LLMs.
- Implement QLoRA in fine-tuning large language models for domain-specific applications.
- Optimize fine-tuning performance on limited computational resources using quantization.
- Deploy and evaluate fine-tuned models in real-world applications efficiently.
Fine-Tuning Lightweight Models for Edge AI Deployment
14 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at intermediate-level embedded AI developers and edge computing specialists who wish to fine-tune and optimize lightweight AI models for deployment on resource-constrained devices.
By the end of this training, participants will be able to:
- Select and adapt pre-trained models suitable for edge deployment.
- Apply quantization, pruning, and other compression techniques to reduce model size and latency.
- Fine-tune models using transfer learning for task-specific performance.
- Deploy optimized models on real edge hardware platforms.
Fine-Tuning Open-Source LLMs (LLaMA, Mistral, Qwen, etc.)
14 HoursThis instructor-led, live training in Macao (online or onsite) is aimed at intermediate-level ML practitioners and AI developers who wish to fine-tune and deploy open-weight models like LLaMA, Mistral, and Qwen for specific business or internal applications.
By the end of this training, participants will be able to:
- Understand the ecosystem and differences between open-source LLMs.
- Prepare datasets and fine-tuning configurations for models like LLaMA, Mistral, and Qwen.
- Execute fine-tuning pipelines using Hugging Face Transformers and PEFT.
- Evaluate, save, and deploy fine-tuned models in secure environments.